If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81t^2-18t+1=0
a = 81; b = -18; c = +1;
Δ = b2-4ac
Δ = -182-4·81·1
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$t=\frac{-b}{2a}=\frac{18}{162}=1/9$
| 0.5=2-x+2x^2 | | 10x^2-13x+7=0 | | 13.28+0.09x(x+3)=14.03-0.14x | | -v-5/2v=7 | | 1/4(5x+16/3)-2/3(3/4x+1/2)=-52 | | 8+(x÷3)=-2 | | 2(a^2+6)=11a | | (5x+7)(x+1)=16 | | x^2-12x=0. | | 24/x=64/2x+2 | | 95-p=44 | | x*2-4x+3-2=28 | | 172=4+4(6-6r) | | 172=4+(6-6r) | | 9-3x=-3x+6 | | 3x^2-6x=-3. | | 3x2-6x=-3. | | 7/9u=28 | | C(x)=4x2-32x+128. | | x^2+13x+49=9 | | |4z+10|-13=0 | | 1/2m+1/4+3/4=12 | | 16/5+x-2=x+16/5 | | 8x=-6+7x | | 4/2x+8=2/3x | | -2(2v+1)-6(v-3)=16 | | 12c+35-5c+11=-2 | | 7(7-2x)=-2x-11 | | P=11q/2 | | 49-7(y-7)=21 | | 1+7m=5+5m | | -4(v+3)=2v-37 |